Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
Br J Pharmacol ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644540

RESUMO

BACKGROUND AND PURPOSE: White adipose tissue (WAT) is involved in rheumatoid arthritis (RA). This study explored its potential as an antirheumatic target. EXPERIMENTAL APPROACH: WAT status of healthy and adjuvant-induced arthritis (AIA) rats were compared. The contribution of WAT to RA pathology was evaluated by pre-adipocyte transplant experiments and by dissecting perirenal fat pads of AIA rats. The impact of RA on WAT was investigated by culturing pre-adipocytes. Proteins differentially expressed in WAT of healthy and AIA rats were identified by the UPLC/MS2 method. These together with PPARγ siRNA and agonist were used to treat pre-adipocytes in vitro. The medium was used for THP-1 monocyte culture. KEY RESULTS: Compared with healthy controls, AIA WAT was smaller but secreted more leptin, eNAMPT, MCP-1, TNF-α, and IL-6. AIA rat pre-adipocytes increased the levels of these adipokines in healthy recipients. RA patients' serum induced a similar secretion change and impaired differentiation of pre-adipocytes. Adipectomy eased AIA-related immune abnormalities and arthritic manifestations. Hepatokines PON1, IGFBP4, and GPIHBP1 were among the differential proteins in high levels in RA blood, and induced inflammatory secretions by pre-adipocytes. GPIHBP1 inhibited PPARγ expression and caused differentiation impairment and inflammatory secretion by pre-adipocytes, a similar outcome to PPARγ-silencing. This endowed the cells with an ability to activate monocytes, which can be abrogated by rosiglitazone. CONCLUSION AND IMPLICATIONS: Certain hepatokines potentiate inflammatory secretions by pre-adipocytes and expedite RA progression by inhibiting PPARγ. Targeting this signalling or abnormal WAT secretion by various approaches may reduce RA severity.

2.
Phys Chem Chem Phys ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647031

RESUMO

Carbonaceous materials are promising candidates as anode materials for non-lithium-ion batteries (NLIBs) due to their appealing properties such as good electrical conductivity, low cost, and high safety. However, graphene, a classic two-dimensional (2D) carbon material, is chemically inert to most metal atoms, hindering its application as an electrode material for metal-ion batteries. Inspired by the unique geometry of a four-penta unit, we explore a metallic 2D carbon allotrope C5-10-16 composed of 5-10-16 carbon rings. The C5-10-16 monolayer is free from any imaginary frequencies in the whole Brillouin zone. Due to the introduction of a non-sp2 hybridization state into C5-10-16, the extended conjugation of π-electrons is disrupted, leading to the enhanced surface activity toward metal ions. We investigate the performance of C5-10-16 as the anode for sodium/potassium-ion batteries by using first-principles calculations. The C5-10-16 sheet has high theoretical specific capacities of Na (850.84 mA h g-1) and K (743.87 mA h g-1). Besides, C5-10-16 exhibits a moderate migration barrier of 0.63 (0.32) eV for Na (K), ensuring rapid charging/discharging processes. The average open-circuit voltages of Na and K are 0.33 and 0.62 V, respectively, which are within the voltage acceptance range of anode materials. The fully sodiated (potassiated) C5-10-16 shows tiny lattice expansions of 1.4% (1.3%), suggesting the good reversibility. Moreover, bilayer C5-10-16 significantly affects both the adsorption strength and the mobility of Na or K. All these results show that C5-10-16 could be used as a promising anode material for NLIBs.

3.
Mar Biotechnol (NY) ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652190

RESUMO

The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system has been widely applied in animals as an efficient genome editing tool. However, the technique is difficult to implement in fish cell lines partially due to the lack of efficient promoters to drive the expression of both sgRNA and the Cas9 protein within a single vector. In this study, it was indicated that the zebrafish U6 RNA polymerase III (ZFU6) promoter could efficiently induce tyrosinase (tyr) gene editing and lead to loss of retinal pigments when co-injection with Cas9 mRNA in zebrafish embryo. Furthermore, an optimized all-in-one vector for expression of the CRISPR/Cas9 system in the zebrafish fibroblast cell line (PAC2) was constructed by replacing the human U6 promoter with ZFU6 promoter, basing on the lentiCRISPRV2 system that widely applied in mammal cells. This new vector could successfully target the cellular communication network factor 2a (ctgfa) gene and demonstrated its function in the PAC2 cell. Notably, the vector could also be used to edit the endogenous EMX1 gene in the mammal 293 T cell line, implying its wide application potential. In conclusion, we established a new gene editing tool for zebrafish cell line, which could be a useful in vitro platform for high-throughput analyzing gene function in fish.

4.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 173-178, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605617

RESUMO

A wireless wearable sleep monitoring system based on EEG signals is developed. The collected EEG signals are wirelessly sent to the PC or mobile phone Bluetooth APP for real-time display. The system is small in size, low in power consumption, and light in weight. It can be worn on the patient's forehead and is comfortable. It can be applied to home sleep monitoring scenarios and has good application value. The key performance indicators of the system are compared with the industry-related medical device measurement standards, and the measurement results are better than the special standards.


Assuntos
Telefone Celular , Dispositivos Eletrônicos Vestíveis , Humanos , Polissonografia , Eletrocardiografia , Tecnologia sem Fio , Eletroencefalografia
5.
Chemosphere ; 355: 141863, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579955

RESUMO

Bifenthrin (BF) is ubiquitous in aquatic environments, and studies have indicated that environmental concentrations of BF could cause neurotoxicity and oxidative damage in fish and decrease the abundance of aquatic insects. However, little information is available on the toxicity of BF in freshwater benthic mollusks. Bellamya aeruginosa (B. aeruginosa) is a key benthic fauna species in aquatic ecosystems, and has extremely high economic and ecological values. In this study, larval B. aeruginosa within 24 h of birth were exposed to 0, 30 or 300 ng/L of BF for 30 days, and then the toxic effects from molecular to individual levels were comprehensively evaluated in all the three treatment groups. It was found that BF at 300 ng/L caused the mortality of snails. Furthermore, BF affected snail behaviors, evidenced by reduced crawling distance and crawling speed. The hepatopancreas of snails in the two BF exposure groups showed significant pathological changes, including increase in the number of yellow granules and occurrence of hemocyte infiltration, epithelial cell thinning, and necrosis. The levels of ROS and MDA were significantly increased after exposure to 300 ng/L BF, and the activities of two antioxidant enzymes SOD and CAT were increased significantly. GSH content decreased significantly after BF exposure, indicating the occurrence of oxidative damage in snails. Transcriptomic results showed that differentially expressed genes (DEGs) were significantly enriched in pathways related to metabolism and neurotoxicity (e.g., oxidative phosphorylation and Parkinson disease), and these results were consistent with those in individual and biochemical levels above. The study indicates that environmental concentration of BF results in decreased survival rates, sluggish behavior, histopathological lesions, oxidative damage, and transcriptomic changes in the larvae of B. aeruginosa. Thus, exposure of larval snails to BF in the wild at concentrations similar to those used in this study might have adverse consequences at the population level. These findings provide a theoretical basis for further assessing the ecological risk of BF to aquatic gastropods.


Assuntos
Gastrópodes , Pseudomonas aeruginosa , Piretrinas , Animais , Ecossistema , Larva , Água Doce
6.
Phys Chem Chem Phys ; 26(15): 11738-11745, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563831

RESUMO

High-performance sodium-ion batteries (SIBs) require anode materials with high capacity and fast kinetics. Based on first-principles calculations, we propose BC3N2 and BC3N2/graphene (B/G) heterostructure as potential SIB anode materials. The BC3N2 monolayer exhibits intrinsic metallic behavior. In addition, BC3N2 possesses a low Na+ diffusion barrier (0.15 eV), a high storage capacity (777 mA h g-1), a low open-circuit voltage (0.72 V), and a tiny axial expansion (0.36%). Compared with the BC3N2 monolayer, the B/G heterostructure exhibits a lower diffusion barrier of 0.027 eV, suggesting a much faster diffusion. More importantly, although the B/G heterostructure possesses heavier molar weight, its theoretical capacity (689 mA h g-1) is comparable to that of the BC3N2 monolayer. Based on the above-mentioned properties, we hope both the BC3N2 monolayer and the B/G heterostructure would be promising anodes for SIBs.

7.
Chemosphere ; 354: 141663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479684

RESUMO

Two fish species from the middle reaches of the Yangtze River, China, were sampled to investigate the occurrence, tissue distribution, age-dependent accumulation and ecological risk assessment of 24 organophosphorus flame retardants (OPFRs). Seventeen OPFRs were detected in tissue samples with a total concentration ranging from not detected (ND) to 1092 ng g-1 dw. Cl-OPFRs were predominant in all tissues (mean: 145 ng g-1 dw, median: 72.9 ng g-1 dw) and the concentrations of OPFRs in brain were the greatest (crucian carp: 525 ng g-1 dw, silver carp: 56.0 ng g-1 dw) compared with the other three organs (e.g., liver, muscle and gonad). Furthermore, the total concentrations of OPFRs in crucian carp tissues were significantly greater than those in silver carp (P < 0.01). Age-dependent accumulation of OPFRs was observed in the two fish species, but the accumulation profiles in the two fish species were different. Ecological risk assessment demonstrated that both fish species were at medium to high risk, and TDCIPP was a main contributor (>50%).


Assuntos
Carpas , Retardadores de Chama , Animais , Compostos Organofosforados , Retardadores de Chama/análise , Rios , Distribuição Tecidual , Organofosfatos , China , Medição de Risco
8.
Sci Total Environ ; 924: 171576, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461997

RESUMO

Ammonia pollution is an important environmental stress factors in water eutrophication. The intrinsic effects of ammonia stress on liver toxicity and muscle quality of rainbow trout were still unclear. In this study, we focused on investigating difference in muscle metabolism caused by metabolism disorder of rainbow trout liver at exposure times of 0, 3, 6, 9 h at 30 mg/L concentrations. Liver transcriptomic analysis revealed that short-term (3 h) ammonia stress inhibited carbohydrate metabolism and glycerophospholipid production but long-term (9 h) ammonia stress inhibited the biosynthesis and degradation of fatty acids, activated pyrimidine metabolism and mismatch repair, lead to DNA strand breakage and cell death, and ultimately caused liver damage. Metabolomic analysis of muscle revealed that ammonia stress promoted the reaction of glutamic acid and ammonia to synthesize glutamine to alleviate ammonia toxicity, and long-term (9 h) ammonia stress inhibited urea cycle, hindering the alleviation of ammonia toxicity. Moreover, it accelerated the consumption of flavor amino acids such as arginine and aspartic acid, and increased the accumulation of bitter substances (xanthine) and odorous substances (histamine). These findings provide valuable insights into the potential risks and hazards of ammonia in eutrophic water bodies subject to rainbow trout.


Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/fisiologia , Amônia/toxicidade , Amônia/metabolismo , Fígado/metabolismo , Músculos/metabolismo , Água/metabolismo
9.
Biol Direct ; 19(1): 24, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504385

RESUMO

BACKGROUND: Pancreatic cancer stem cells are crucial for tumorigenesis and cancer metastasis. Presently, long non-coding RNAs were found to be associated with Pancreatic Ductal Adenocarcinoma stemness characteristics but the underlying mechanism is largely known. Here, we aim to explore the function of LINC00909 in regulating pancreatic cancer stemness and cancer metastasis. METHODS: The expression level and clinical characteristics of LINC00909 were verified in 80-paired normal pancreas and Pancreatic Ductal Adenocarcinoma tissues from Guangdong Provincial People's Hospital cohort by in situ hybridization. RNA sequencing of PANC-1 cells with empty vector or vector encoding LINC00909 was experimented for subsequent bioinformatics analysis. The effect of LINC00909 in cancer stemness and metastasis was examined by in vitro and in vivo experiments. The interaction between LINC00909 with SMAD4 and the pluripotency factors were studied. RESULTS: LINC00909 was generally upregulated in pancreatic cancer tissues and was associated with inferior clinicopathologic features and outcome. Over-expression of LINC00909 enhanced the expression of pluripotency factors and cancer stem cells phenotype, while knock-down of LINC00909 decreased the expression of pluripotency factors and cancer stem cells phenotype. Moreover, LINC00909 inversely regulated SMAD4 expression, knock-down of SMAD4 rescued the effect of LINC00909-deletion inhibition on pluripotency factors and cancer stem cells phenotype. These indicated the effect of LINC00909 on pluripotency factors and CSC phenotype was dependent on SMAD4 and MAPK/JNK signaling pathway, another downstream pathway of SMAD4 was also activated by LINC00909. Specifically, LINC00909 was localized in the cytoplasm in pancreatic cancer cells and decreased the stability the SMAD4 mRNA. Finally, we found over-expression of LINC00909 not only accelerated tumor growth in subcutaneous mice models, but also facilitated tumorigenicity and spleen metastasis in orthotopic mice models. CONCLUSION: We demonstrate LINC00909 inhibits SMAD4 expression at the post-transcriptional level, which up-regulates the expression of pluripotency factors and activates the MAPK/JNK signaling pathway, leading to enrichment of cancer stem cells and cancer metastasis in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/genética , Fenótipo , Proteína Smad4/genética , Proteína Smad4/metabolismo , RNA não Traduzido/genética
10.
Environ Sci Technol ; 58(11): 4904-4913, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437168

RESUMO

The Yangtze River fishery resources have declined strongly over the past few decades. One suspected reason for the decline in fishery productivity, including silver carp (Hypophthalmichthys molitrix), has been linked to organophosphate esters (OPEs) contaminant exposure. In this study, the adverse effect of OPEs on lipid metabolism in silver carp captured from the Yangtze River was examined, and our results indicated that muscle concentrations of the OPEs were positively associated with serum cholesterol and total lipid levels. In vivo laboratory results revealed that exposure to environmental concentrations of OPEs significantly increased the concentrations of triglyceride, cholesterol, and total lipid levels. Lipidome analysis further confirmed the lipid metabolism dysfunction induced by OPEs, and glycerophospholipids and sphingolipids were the most affected lipids. Hepatic transcriptomic analysis found that OPEs caused significant alterations in the transcription of genes involved in lipid metabolism. Pathways associated with lipid homeostasis, including the peroxisome proliferator-activated receptor (PPAR) signal pathway, cholesterol metabolism, fatty acid biosynthesis, and steroid biosynthesis, were significantly changed. Furthermore, the affinities of OPEs were different, but the 11 OPEs tested could bind with PPARγ, suggesting that OPEs could disrupt lipid metabolism by interacting with PPARγ. Overall, this study highlighted the harmful effects of OPEs on wild fish and provided mechanistic insights into OPE-induced metabolic disorders.


Assuntos
Carpas , Retardadores de Chama , Doenças Metabólicas , Animais , Rios , PPAR gama , Ésteres/análise , Organofosfatos/toxicidade , Organofosfatos/análise , Colesterol/análise , Lipídeos , Retardadores de Chama/análise , China , Monitoramento Ambiental/métodos
11.
J Phys Chem Lett ; 15(9): 2485-2492, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38408427

RESUMO

We propose a two-dimensional carbon allotrope (named KT-graphene) by incorporating kagome and tetragonal lattices consisting of trigonal, quadrilateral, octagonal, and dodecagonal rings. The introduction of non-hexagonal rings can give rise to the localized electronic states that improve the chemical reactivity toward potassium, making KT-graphene a high-performance anode material for potassium-ion batteries. It shows a high theoretical capacity (892 mAh g-1), a low diffusion barrier (0.33 eV), and a low average open-circuit voltage (0.51 V). The presence of electrolyte solvents is propitious to boost the K-ion adsorption and diffusion capabilities. Moreover, one-dimensional nanotubes (KT-CNTs), rolled up by the KT-graphene sheet, are metallic regardless of the tube diameter. As the curvature increases, KT-CNTs exhibit significantly increased surface activity, which can promote the electron-donating ability of K. Furthermore, the curvature effect greatly enhances the efficiency of K diffusion on the inner surface compared to that on the outer surface.

12.
J Food Sci ; 89(3): 1485-1497, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317483

RESUMO

To recognize the key ester-related volatile compounds, 5 types of peaches including 54 late-ripening peach materials were examined by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and E-nose. Here, a large number of esters were identified to be released by ripe peach fruits and were mainly characterized by fruity, green, and fatty notes. The variety and content of esters had greatly changed within or between cultivars, indicating that the fruit volatiles were highly differentiated depending on the specific genotypes and cultivation conditions. The ester types showed that fatty acid-derived C6 alcohols and methyl-/ethyl- short-chain alcohol were the main ester precursors, which were more likely to be utilized and well selected by alcohol acyltransferases, whereas the preference of acyl donors was not observed. The common peach type, which exhibited a unique volatile profile, displayed broader diversity and more abundant characteristics in ester-related volatiles than the other four types. A total of 19 key esters were identified as the main components and the content of most esters showed no significant difference among different peach types. Some key esters had even been enriched in nectarines. Moreover, the multiple discriminant analysis revealed a possible relationship between peach types and the domestication of the peach evolution. This study investigated ester-related volatiles released by different types of peach fruits and can be further used to evaluate the peach qualities, providing an important reference for peach breeding and processing.


Assuntos
Prunus persica , Compostos Orgânicos Voláteis , Ésteres/análise , Compostos Orgânicos Voláteis/análise , Melhoramento Vegetal , Frutas/química , Álcoois Graxos/análise , Etanol/análise
13.
Fish Physiol Biochem ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418771

RESUMO

Faba bean has gained attention as a cost-effective protein source with the potential to enhance product quality (texture properties, collagen content, etc.) in fish. However, its anti-nutrition factor, high feed conversion ratio, poor growth performance, etc. limit the widely application as a dietary source, especially in carnivorous fish. The water or alcohol extract of faba bean might resolve the problem. In this study, the juvenile Nibea coibor, known for their high-protein, large-sized, and high-grade swim bladder, were fed with seven isoproteic and isolipid experimental diets with the additive of faba bean water extract (1.25%, 2.5%, and 5%) or faba bean alcohol extract (0.9%, 1.8%, and 3.6%), with a control group without faba bean extract. After the 10-week feeding trail, the growth, antioxidant capacity, textural properties, and collagen deposition of the swim bladder were analyzed. Results showed that the 1.25% faba bean water extract group could significantly promote growth, textural quality of the swim bladder, and have beneficial effects on antioxidant response of fish. Conversely, dietary supplementation of faba bean alcohol extract resulted in reduced growth performance in a dose-dependent manner. Furthermore, fish fed diet with 1.25% faba bean water extract exhibited increased collagen content and upregulated collagen-related gene expression in the swim bladder, which was consistent with the Masson stain analysis for collagen fiber. Our results suggested that the anti-nutrient factor and bioactive component of faba bean may mainly be enriched in alcohol extract and water extract of faba bean, respectively. Besides, the appropriate addition of water extract of faba bean may improve the texture quality of the swim bladder by promoting collagen deposition. This study would provide a theoretical basis for the formulated diets with faba bean extract to promote product quality of marine fish.

14.
Aquat Toxicol ; 267: 106815, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185038

RESUMO

2-ethylhexyl diphenyl phosphate (EHDPP) strongly binds to transthyretin (TTR) and affects the expression of genes involved in the thyroid hormone (TH) pathway in vitro. However, it is still unknown whether EHDPP induces endocrine disruption of THs in vivo. In this study, zebrafish (Danio rerio) embryos (< 2 h post-fertilization (hpf)) were exposed to environmentally relevant concentrations of EHDPP (0, 0.1, 1, 10, and 100 µg·L-1) for 120 h. EHDPP was detected in 120 hpf larvae at concentrations of 0.06, 0.15, 3.71, and 59.77 µg·g-1 dry weight in the 0.1, 1, 10, and 100 µg·L-1 exposure groups, respectively. Zebrafish development and growth were inhibited by EHDPP, as indicated by the increased malformation rate, decreased survival rate, and shortened body length. Exposure to lower concentrations of EHDPP (0.1 and 1 µg·L-1) significantly decreased the whole-body thyroxine (T4) and triiodothyronine (T3) levels and altered the expressions of genes and proteins involved in the hypothalamic-pituitary-thyroid axis. Downregulation of genes related to TH synthesis (nis and tg) and TH metabolism (dio1 and dio2) may be partially responsible for the decreased T4 and T3 levels, respectively. EHDPP exposure also significantly increased the transcription of genes involved in thyroid development (nkx2.1 and pax8), which may stimulate the growth of thyroid primordium to compensate for hypothyroidism. Moreover, EHDPP exposure significantly decreased the gene and protein expression of the transport protein transthyretin (TTR) in a concentration-dependent manner, suggesting a significant inhibitory effect of EHDPP on TTR. Molecular docking results showed that EHDPP and T4 partly share the same mode of action of binding to the TTR protein, which might result in decreased T4 transport due to the binding of EHDPP to the TTR protein. Taken together, our findings indicate that EHDPP can cause TH disruption in zebrafish and help elucidate the mechanisms underlying EHDPP toxicity.


Assuntos
Compostos de Bifenilo , Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Glândula Tireoide , Peixe-Zebra/metabolismo , Pré-Albumina/genética , Pré-Albumina/metabolismo , Pré-Albumina/farmacologia , Bioacumulação , Larva , Fosfatos/metabolismo , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/toxicidade , Hormônios Tireóideos/metabolismo , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/metabolismo
15.
Phys Chem Chem Phys ; 26(5): 4589-4596, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38250962

RESUMO

Multivalent-ion batteries have garnered significant attention due to their high energy density, low cost, and superior safety. Calcium-ion batteries (CIBs) are regarded as the next-generation energy storage systems for their abundant natural resources and bivalent characteristics. However, the absence of high-performance anode materials poses a significant obstacle to the progress of battery technology. Two-dimensional (2D) Dirac materials have excellent conductivity and abundant active sites, rendering them promising candidates as anode materials. A novel 2D Dirac material known as "graphene+" has been theoretically reported, exhibiting prominent properties including good stability, exceptional ductility, and remarkable electronic conductivity. By using first-principles calculations, we systematically investigate the performance of graphene+ as an anode material for CIBs. Graphene+ exhibits an ultra-high theoretical capacity (1487.7 mA h g-1), a small diffusion barrier (0.21 eV), and a low average open-circuit voltage (0.51 V). Furthermore, we investigate the impact of the electrolyte solvation on the performance of Ca-ion adsorption and migration. Upon contact with electrolyte solvents, graphene+ exhibits strong adsorption strength and rapid migration of Ca-ions on its surface. These results demonstrate the promising potential of graphene+ as a high-performance anode material for CIBs.

16.
Sci Total Environ ; 912: 169568, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38143001

RESUMO

Constructed wetlands (CWs) are a cost-effective and environmentally friendly wastewater treatment technology. The influent chemical oxygen demand (COD)/nitrogen (N) ratio (CNR) plays a crucial role in microbial activity and purification performance. However, the effects of CNR changes on microbial diversity, interactions, and assembly processes in CWs are not well understood. In this study, we conducted comprehensive mechanistic experiments to investigate the response of CWs to changes in influent CNR, focusing on the effluent, rhizosphere, and substrate microbiota. Our goal is to provide new insights into CW management by integrating microbial ecology and environmental engineering perspectives. We constructed two groups of horizontal subsurface flow constructed wetlands (HFCWs) and set up three influent CNRs to analyse the microbial responses and nutrient removal. The results indicated that increasing influent CNR led to a decrease in microbial α-diversity and niche width. Genera involved in nitrogen removal and denitrification, such as Rhodobacter, Desulfovibrio, and Zoogloea, were enriched under medium/high CNR conditions, resulting in higher nitrate (NO3--N) removal (up to 99 %) than that under lower CNR conditions (<60 %). Environmental factors, including water temperature (WT), pH, and phosphorus (P), along with CNR-induced COD and NO3--N play important roles in microbial succession in HFCWs. The genus Nitrospira, which is involved in nitrification, exhibited a significant negative correlation (p < 0.05) with WT, COD, and P. Co-occurrence network analysis revealed that increasing influent CNR reduced the complexity of the network structure and increased microbial competition. Analysis using null models demonstrated that the microbial community assembly in HFCWs was primarily driven by stochastic processes under increasing influent CNR conditions. Furthermore, HFCWs with more stochastic microbial communities exhibited better denitrification performance (NO3--N removal). Overall, this study enhances our understanding of nutrient removal, microbial co-occurrence, and assembly mechanisms in CWs under varying influent CNRs.


Assuntos
Desnitrificação , Microbiota , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Nitrificação , Nitrogênio/química , Água , Eliminação de Resíduos Líquidos/métodos
17.
Animals (Basel) ; 13(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958096

RESUMO

The Tonnoidea Suter, 1913 (1825) is a moderately diverse group of large predatory gastropods, the systematics of which remain unclear. In the present study, the complete mitochondrial genomes of nine Tonnoidean species were sequenced. All newly sequenced mitogenomes contain 13 protein-coding genes (PCGs), 22 transfer RNA genes and two ribosomal RNA genes, showing similar patterns in genome size, gene order and nucleotide composition. The ratio of nonsynonymous to synonymous of PCGs indicated that NADH complex genes of Tonnoideans were experiencing a more relaxed purifying selection compared with the COX genes. The reconstructed phylogeny based on the combined amino acid sequences of 13 protein-coding genes and the nucleotide sequences of two rRNA genes supported that Ficidae Meek, 1864 (1840) is a sister to Tonnoidea. The monophylies of all Tonnoidean families were recovered and the internal phylogenetic relationships were consistent with the current classification. The phylogeny also revealed that Tutufa rebuta (Linnaeus, 1758) is composed of at least two different species, indicating that the species diversity within Bursidae Thiele, 1925 might be underestimated. The present study contributes to the understanding of the Tonnoidean systematics, and it could provide important information for the revision of Tonnoidean systematics in the future.

18.
Heliyon ; 9(11): e21642, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027595

RESUMO

Background: Co-diabetes pancreatic adenocarcinoma has a poorer prognosis than pancreatic adenocarcinoma without diabetes. This study aimed to develop a reliable prognostic model for patients with co-diabetes pancreatic adenocarcinoma. Method: Overall, 169 patients with co-diabetes pancreatic adenocarcinoma were included in our study. First, the independent risk factors affecting the prognosis of patients with co-diabetes pancreatic adenocarcinoma were determined by univariate and multivariate Cox regression analyses. Based on these identified risk factors, we developed a nomogram and evaluated its predictive ability using the concordance index, receiver operating characteristic curve, calibration plot, decision curve, and net reclassification index. Results: In this study, prealbumin, transferrin, carcinoembryonic antigen, distant metastasis, tumor differentiation neutrophil count, lymphocyte count and fasting blood glucose were confirmed as significant prognostic factors. Based on these predictors, a new nomogram was developed. Compared with the American Joint Committee on Cancer 8 staging system and other models, the nomogram achieved a higher concordance index in the training (0.795) and validation (0.729) queues. The area under the nomogram's curve for predicting patient survival at 0.5, 1, and 1.5 years in the training queue was >0.8. Patients were risk-stratified using the nomogram, and Kaplan-Meier survival curves of subgroups were plotted. The Kaplan-Meier curve also showed better separation than the American Joint Committee on Cancer 8 staging system, indicating that our model has a better risk hierarchical ability. Conclusions: Compared to the American Joint Committee on Cancer 8 staging system and other predictive models, our model showed better predictive ability for patients with co-diabetes pancreatic adenocarcinoma. Our model will help in patients' risk stratification and improves their prognosis.

19.
Fish Shellfish Immunol ; 143: 109198, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926202

RESUMO

The ivory shell (Babylonia areolata) is an economically important shellfish in tropical and subtropical regions, but its intensive culture and biological characteristic of hiding in the sandy substrate make it highly susceptible to ammonia stress. In this study, we investigated the dynamic changes in histopathology, oxidative stress, and transcriptome of the ivory shell at different time points under high concentration (60 mg/L) ammonia exposure. With prolonged exposure to stress, vacuoles appeared in the hepatopancreas while cell volume and intercellular space increased. The activities of superoxide dismutase (SOD) and catalase (CAT) decreased significantly under high concentrations of ammonia-induced stress while malondialdehyde (MDA) levels increased significantly. Integrated analysis of differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that lipid transport primarily contributed to maintaining cellular homeostasis during the early stage of stress (6 and 12 h). Subsequently, a significant upregulation of oxidation-reduction reactions occurred at the middle stage (24 h), leading to oxidative stress. Finally, during the later stage (48 h), metabolic decomposition provided energy for survival maintenance. Additionally, lysosome and apoptosis were identified as potential key pathways in response to acute ammonia toxicity. Overall, our findings suggest that ivory shells can respond to acute ammonia toxicity via immune and antioxidant defense mechanisms but sustained high concentrations may cause irreversible damage. This study provides valuable insights into the response mechanism of mollusks towards ammonia and serves as a data reference for breeding ammonia-tolerant varieties of ivory shells.


Assuntos
Gastrópodes , Transcriptoma , Animais , Amônia/toxicidade , Amônia/metabolismo , Perfilação da Expressão Gênica , Estresse Oxidativo , Antioxidantes/metabolismo , Gastrópodes/metabolismo
20.
Phys Chem Chem Phys ; 25(42): 29224-29232, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873573

RESUMO

Lithium-ion batteries (LIBs) remain irreplaceable for clean energy storage applications. The intrinsic metallic nature of penta-SiCN ensures its promising application in the electrodes of LIBs. Using first-principles calculations, we evaluate the performance of the intrinsic metallic penta-SiCN monolayer as the anode material for LIBs. Penta-SiCN exhibits a low diffusion energy barrier (0.107 eV) for Li atom migration on Si18C18N18, while the diffusion energy barrier for vacancy migration on Li17Si18C18N18 is only 0.006 eV. Additionally, penta-SiCN possesses a high theoretical capacity of 1485.98 mA h g-1, average open-circuit voltage of 0.97 V, and small volume expansion of 1%. Remarkably, penta-SiCN exhibits robust wettability towards the electrolytes (solvent molecules and metal salts) widely used in commercial LIBs, indicating the excellent compatibility in electrode applications. These intriguing theoretical findings make penta-SiCN a high performance anode material for LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...